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An analyt ical  solution of the p rob lem of the t he rma l  conductivity of a two- layer  wall is 
presented.  The solution is obtained by using a specia l  s e r i e s  expansion of the Green ' s  func-  
tion. 

In engineer ing it is  f requent ly  n e c e s s a r y  to protect  meta l  s t ruc tu re s  against  exces s ive  heating by 
cladding them with a t he rma l  shielding m a t e r i a l  which combines  r e f r a c t o r y  p roper t i e s  with a low the rma l  
conductivity. The nature  of the t e m p e r a t u r e  dis t r ibut ion in such s t ruc tu re s  is shown in Fig. 1 for  one-  
dimensional  p rob lems .  There  is a sha rp  t e m p e r a t u r e  drop in the layer  of t he rma l  insulation. At the m e t a l -  
cladding in te r face  

tc(O,. ~) = t~ (0, T). 

Here,  and subsequently,  the subsc r ip t  M r e f e r s  to the meta l  and c to the cladding. 
left  and r ight  of the boundary are :  

at / at 

Since ?~M >> Zc the t e m p e r a t u r e  r i s e  in the meta l  l aye r  is prac t ica l ly  independent of i ts  t he rma l  con- 
duetivi ty and is de te rmined  by the heat conducted through the cladding. The re fo re  one can a s s u m e  without 
l a rge  e r r o r  that the t e m p e r a t u r e  is constant through the meta l  wall. 

Under these  assumpt ions ,  and taking account of the fact  that the heat flux f r o m  the meta l  wall into 
the surrounding medium is  negligibly smal l ,  the prob lem of finding the t e m p e r a t u r e  dis tr ibut ion in the two- 
l ayer  wall  is reduced to the in tegra t ion of the heat-conduct ion equation 

a2t (x, T) at (x, ~) 
ac ~ = (1) 

ax ~ aT 

over  the range  <0, 5c> for  the following boundary and init ial  conditions: 

~,c at (x' ~) I =cM7~5 ~ at (x, ~) I 
ax x=0 aT x=0' 

Xc at (x, ~) I = a (T) [t~ (~) --  t (5c, ~)], (2) 
ax x=~ c 

t(x, 0) = to. (3) 

The solution is obtained in two s tages .  In the f i r s t  s tage  the t e m p e r a t u r e  dis t r ibut ion t 1 (x, "r) in the t he rma l  
insulat ion is de termined in the absence  of the meta l  wall, i .e. ,  for the boundary conditions: 

06 (x, ~) l 
ax x=o= O, 

The the rma l  fluxes to the 
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~,~ ot, (X,0x *) ,=~o = ~ (~) [tA*) - tl (~, ~)]. (4) 

The solution of this problem is given in [2] and we discuss only cer ta in  of its fea tures  here.  

The sys tem (1)-(4) is reduced to a Fredholm integral  equation of the second kind 
6C 

Z(x, ~) = - -  a-~-I ~G(x '  s, ~)• L[~ + dtadT Oc) j] ds, (5) 

0 

whose kernel  G(x, s, r) is the Green 's  function for  a homogeneous differential  opera tor  of the second order  
with homogeneous boundary conditions. 

Approximating the kernel  of Eq. (5) by a special uniformly convergent  bi l inear  se r i e s  [1] 
t~ 

6 (x, s, ~) = ~  ,~ (x, r ~ (s, ,), (6) 

we obtain a sys tem of differential  equations with variable coefficients 

Ah.,(*) ~, (*) + Bk., (~) q~, (*) + q% (*) = ~ Dh'(*), (7) 
k, ]=l  k= l  

where  

6 C 

1 . ~ ~k (s, "0 ~ (s, "0 ds; 
Cl c J 

0 

B~,y ('0 = 
t~ c 

1 ~ Vh (s, ~)~j(s, ~)ds; 
a c J 

0 

6 c 
Dh (~) = 1 dta(~) 

ac - " d~ v Y~ (~' ~) ds (8) 

with the initial conditions 

8c 

[ta (0) - tol S p; (s, 0) ds 
o (9) 

% (0) = ~c 
~ (s, o)p; (s, o) ds 

The sys tem (7) with conditions {9) can be solved by repeated application of the method presented here.  
For  a hea t - t r ans fe r  coefficient in (2) that does not va ry  with t ime the sys tem (7) becomes a sys tem of ordi -  
nary  differential  equations with constant coefficients which can easi ly be solved by famil iar  methods. 

Finally the t empera tu re  function for conditions (4) is given by 
n 

tl(x, T) = ta(~) - - X  Y~ (x, T) ~% (x). (10) 

In pract ical  applications the special  s e r i e s  (6) represen t ing  the kernel  of the integral  equation (5) in 
Eq. (10) can be broken off a f te r  two te rms ,  and often af ter  the f i r s t  te rm.  

The second stage of the solution requ i res  the determinat ion of the t empera tu re  distr ibution t2(x , T) 
in the layer  of insulating mater ia l  in the presence  of the metal  wall, considered as a plane heat source  of 
s trength q(7) proport ional  to the ra te  of change of t empera tu re  at x = 0. Then the corresponding function 
charac te r iz ing  the t empera tu re  distr ibution in the range (0, 5c) is obtained by multiplying the Green ' s  
function by q(r), i .e. ,  

t~(x, ~ ) = - - G ( x ,  0, ~)q(T) = - - 6  c u(-c) 5 - ~  + 1 - -  Z c 0~ (11) 
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Fig. 1. T e m p e r a t u r e  d i s -  
t r ibu t ion  in a t h e r m a l l y  
shie lded wall.  

Since the p rob lem is l inear  the r e q u i r e d  t e m p e r a t u r e  sa t i s fy ing  condit ions 
(2) is  

t (x, ~)--- ta (~)- -~ V~ (x, ~) % (~) 
i = 1  

- -  6c a (~) 6~-~ 6c ~c & I~=0 

(12) 

In tegra t ion  of (12) fo r  x = 0 and condit ion (3) gives 

whe re  

t(x, -QIx=o=[to§ fQ(~)exp(~ p(~)dT)d~] e x p ( - -  p(T) d~), 
b' o o 

Xc Bi (~) 
P (~) = (i + Bi (~)) ~ = ~ . ~  ' 

Q(~) = [ta ( ~ ) -  ~ v,(0, ~)% (~)] p(~); 

Bi (z) a (~) 6:c 
kc 

(13) 

F ina l ly  the solut ion of the p rob lem is obtained by subs t i tu t ing  (13) into (12) 

n I x  Bi(~) ' l f  2 
i ~ l  i ~ 1  

(14) 
T T T 

+ [~0 + .f o (~)o~, ( j ' ,  (,)~,)~,] ox~ (- . f . ,  (,)~,)}. 
0 0 0 

The running t e m p e r a t u r e  of the me ta l  l a y e r  is  a l so  given by (14) by se t t ing  x = 0. 

We p r e sen t  the e x p r e s s i o n  for  the t e m p e r a t u r e  funct ion (14), l imi t ing  o u r s e l v e s  in (10) to the f i r s t  

- - §  1 - - ~ c  

t e r m  of the s e r i e s .  

In a c c o r d  with [2] and (14) we have: 

1 
Bi (~) 

v~ (x, ~) = V V  c / 1 1 
V Bi (~) -} 3 

Bi (,)- @ 6c o o 

AIA (':) • ~ c  § -~- ' 

d, 1 } (id,  Al,l(~ ) §  0 exp - -  A1.1(~) ) ,  
0 

% (~) = 

[ x Bi(~) ]{ta (~) __ Yl(0, T) % (~) t(x, -c) = Ea (T) - -  yl (X , 1 : )%(z)§ 1 6 c I §  

+It0 + ~ (t~(,)-~,(0, ") % (')/. (') 
0 

exp (b p('c)d'~)d'~] exp (--So p(-c) d~ . (15) 

If the h e a t - t r a n s f e r  coef f ic ien t  and the ambien t  t e m p e r a t u r e  do not v a r y  with t ime  a (7) = a ,  ta(z) = ta 
and Eq. (15) takes  the f o r m  

/ '( ( )[ 
X 2 

exp - -  - -  exp (-- p~) t (x, ~) ~ t a - -  (t a - -  to) 1 Bi 6 c 1 -/- Bi 
I §  3 
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1+ ---1 Bi 
2 
I 

lq- -~-Bi 

AI,lP exp (--p~) - -  exp - -  ~ . 

Al,lp - -  I 

Equation (16) can be used to ca lcu la te  the  t e m p e r a t u r e  d i s t r ibu t ion  in the c ladding when 

Fo =-~c2 ~> 0,5. 

In the metal layer (16) takes the form 

t (0, ~) = t a -  (t a - -  to) 2 (1 -}- Bi) 3 q- B i c~,yM6~, q- exp ( L  p~) . 

3 (l + Ui) CcYca o 

In conclusion we note that the presence of heat sources in the insulating layer does not introduce 
singularities into the solution of the problem under study. 

t(x, T) 

5 
C 

7 
a (T), t a ( r  ) 
T 

N O T A T I O N  

is the running t e m p e r a t u r e ;  
is  the t h e r m a l  dif fusivi ty  and conductivi ty;  
is the th ickness ;  
is the spec i f ic  heat;  
is the spec i f ic  weight;  
a r e  the h e a t - t r a n s f e r  coeff ic ient  and ambient  t e m p e r a t u r e ;  
is the t ime.  

i. 

2. 
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